Stability of Integral Delay Equations and Stabilization of Age-Structured Models

نویسندگان

  • Iasson Karafyllis
  • Miroslav Krstic
چکیده

We present bounded dynamic (but observer-free) output feedback laws that achieve global stabilization of equilibrium profiles of the partial differential equation (PDE) model of a simplified, age-structured chemostat model. The chemostat PDE state is positive-valued, which means that our global stabilization is established in the positive orthant of a particular function space—a rather non-standard situation, for which we develop non-standard tools. Our feedback laws do not employ any of the (distributed) parametric knowledge of the model. Moreover, we provide a family of highly unconventional Control Lyapunov Functionals (CLFs) for the age-structured chemostat PDE model. Two kinds of feedback stabilizers are provided: stabilizers with continuously adjusted input and sampled-data stabilizers. The results are based on the transformation of the first-order hyperbolic partial differential equation to an ordinary differential equation (one-dimensional) and an integral delay equation (infinite-dimensional). Novel stability results for integral delay equations are also provided; the results are of independent interest and allow the explicit construction of the CLF for the age-structured chemostat model.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hyers-Ulam and Hyers-Ulam-Rassias stability of nonlinear integral equations with delay

In this paper we are going to study the Hyers{Ulam{Rassias typesof stability for nonlinear, nonhomogeneous Volterra integral equations with delayon nite intervals.

متن کامل

Ulam stabilities for nonlinear Volterra-Fredholm delay integrodifferential equations

In the present research paper we derive results about existence and uniqueness of solutions and Ulam--Hyers and Rassias stabilities of nonlinear Volterra--Fredholm delay integrodifferential equations. Pachpatte's inequality and Picard operator theory are the main tools that are used to obtain our main results. We concluded this work with applications of ob...

متن کامل

Superconvergence analysis of multistep collocation method for delay functional integral equations

In this paper, we will present a review of the multistep collocation method for Delay Volterra Integral Equations (DVIEs) from [1] and then, we study the superconvergence analysis of the multistep collocation method for DVIEs. Some numerical examples are given to confirm our theoretical results.

متن کامل

NUMERICAL SOLUTION OF DELAY INTEGRAL EQUATIONS BY USING BLOCK PULSE FUNCTIONS ARISES IN BIOLOGICAL SCIENCES

This article proposes a direct method for solving three types of integral equations with time delay. By using operational matrix of integration, integral equations can be reduced to a linear lower triangular system which can be directly solved by forward substitution. Numerical examples shows that the proposed scheme have a suitable degree of accuracy.  

متن کامل

New Approach to Exponential Stability Analysis and Stabilization for Delayed T-S Fuzzy Markovian Jump Systems

This paper is concerned with delay-dependent exponential stability analysis and stabilization for continuous-time T-S fuzzy Markovian jump systems with mode-dependent time-varying delay. By constructing a novel Lyapunov-Krasovskii functional and utilizing some advanced techniques, less conservative conditions are presented to guarantee the closed-loop system is mean-square exponentially stable....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1609.09437  شماره 

صفحات  -

تاریخ انتشار 2016